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The Modulus 

 

 If a is an integer and n is a positive integer, we define a mod n to be the remainder when 

a is divided by n. The integer n is called the modulus. Thus, for any integer a, we can 

rewrite Equation (4.1) as follows: 

 
 Two integers a and b are said to be congruent modulo n, if (a mod n) = (b mod n). This 

is written as a K b (mod n). 

 

 
 

Properties of Congruences 

 

Congruences have the following properties: 

 
To demonstrate the first point, if n | (a - b), then (a - b) = kn for some k. 

 So when b is divided by n) = (b mod n).we can write a = b + kn. Therefore, (a mod n) 

= (remainder when b + kn is divided by n) = remainder 

 
The remaining points are as easily proved. 

 

Modular Arithmetic Operations 



 

 Note that, by definition (Figure 4.1), the (mod n) operator maps all integers into the set 

of integers {0, 1, c, (n - 1)}. this technique is known as modular arithmetic. 

 

Modular arithmetic exhibits the following properties: 

 
 

Properties of Modular Arithmetic 

 

Define the set Zn as the set of nonnegative integers less than n: 

 
This is referred to as the set of residues, or residue classes (mod n). To be more precise, 

each integer in Zn represents a residue class. We can label the residue classes (mod n) as [0], 

[1], [2], c, [n - 1], where 

 
 

 
 

 

2.4. EUCLID’S ALGORITHM 
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Introduction 

 One of the basic techniques of number theory is the Euclidean algorithm, which is a 

simple procedure for determining the greatest common divisor of two positive integers. 

First, we need a simple definition: Two integers are relatively prime if their only 

common positive integer factor is 1. 

 

Greatest Common Divisor: 



 

 Recall that nonzero b is defined to be a divisor of a if a = mb for some m, where a, b, 

and m are integers.  

 We will use the notation gcd(a, b) to mean the greatest common divisor of a and b. 

The greatest common divisor of a andb is the largest integer that divides both a and b.  

 We also define gcd(0, 0) = 0.More formally, the positive integer c is said to be the 

greatest common divisor of a and b if 

1. c is a divisor of a and of b. 

2. Any divisor of a and b is a divisor of c. 

 

An equivalent definition is the following: 

 
 Because we require that the greatest common divisor be positive, gcd(a, b) = gcd(a, −b) 

= gcd(−a, b) = gcd(−a,−b). In general, gcd(a, b) = gcd( |a| ,  |b|). 

 
 

Finding the Greatest Common Divisor 

 

 Suppose we have integers a, b such that d = gcd(a, b). Because gcdgcd( |a| ,  |b|) = gcd(a, 

b), there is no harm in assuming a ≥ b > 0. Now dividing a by b and applying the division 

algorithm, we can state: 

 
 Let us now return to Equation (4.2) and assume that r1 ≠ 0. Because b > r1, we can 

divide b by r1 and apply the division algorithm to obtain: 

 
The result is the following system of equations: 

 
Let us now look at an example with relatively large numbers to see the power of this algorithm: 



 
 

 

In this example, we begin by dividing 1160718174 by 316258250, which gives 3 with a 

remainder of 211943424. Next we take 316258250 and divide it by 211943424. The process 

continues until we get a remainder of 0, yielding a result of 1078. 

 

 

2.5. CONGRUENCE AND MATRICES  

 

2.6. GROUPS, RINGS, FIELDS 

 

 

 

Groups, rings, and fields are the fundamental elements of a branch of mathematicsknown as 

abstract algebra, or modern algebra.  

 

Groups 
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 A group G, sometimes denoted by {G, ∙}, is a set of elements with a binary 

operationdenoted by ∙ that associates to each ordered pair (a, b) of elements in G an 

element(a ∙ b) in G, such that the following axioms are obeyed: 

 
 

 
 

 If a group has a finite number of elements, it is referred to as a finite group, and the 

order of the group is equal to the number of elements in the group. Otherwise, the 

group is an infinite group. 

 A group is said to be abelian if it satisfies the following additional condition: 

 
Rings 

 

 A ring R, sometimes denoted by {R, +, *}, is a set of elements with two binary 

operations, called addition and multiplication, such that for all a, b, c in R the following 

axioms are obeyed. 

 
 

 A ring is said to be commutative if it satisfies the following additional condition: 

 
 

 Next, we define an integral domain, which is a commutative ring that obeys the 

following axioms. 

 
 

Fields: 

 A field F, sometimes denoted by {F, +, *}, is a set of elements with two binary 

operations, called addition and multiplication, such that for all a, b, c in F the following 

axioms are obeyed. 
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SYMMETRIC KEY CIPHERS 
2.8. SDES  
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Introduction 

 

 Proposed by NIST in 1977. 

 It is a block cipher and encrypts 64 bits data using 56 bit key. 

 

DES Encryption: 

 There are two inputs to the encryption function: the plaintext to be encrypted and the 

key. In  this case, the plaintext must be 64 bits in length and key is 56 in length. 

 Looking at the left-hand side of the figure, we can see that the processing of the 

plaintext proceeds in three phases.  

 First, the 64-bit plaintext passes through an initial permutation (IP) that rearranges 

the bits to produce the permuted input.  

 This is followed by a phase consisting of sixteen rounds of the same function, which 

involves both permutation and substitution functions.  

 The output of the last (sixteenth) round consists of 64 bits that are a function of the 

input plaintext and the key. 

  The left and right halves of the output are swapped to produce the  pre output. 

 Finally, the preoutput is passed through a permutation [IP -1] that is the inverse of the 

initial permutation function, to produce the 64-bit ciphertext. With the exception of the 

initial and final permutations, DES has the exact structure of a Feistel Cipher. 



 The right-hand portion of Figure shows the way in which the 56-bit key is used. 

  Initially, the key is passed through a permutation function.  

 Then, for each of the sixteen rounds, a subkey (Ki) is produced by the combination of 

a left circular shift and a permutation.  

 The permutation function is the same for each round, but a different subkey is produced 

because of the repeated shifts of the key bits. 

 

DES Decryption 

  

 As with any Feistel cipher, decryption uses the same algorithm as encryption, except 

that the application of the subkeys is reversed. Additionally, the initial and final 

permutations are reversed. 

 

  
  Fig  .General Depiction of DES Encryption Algorithm 

The Avalanche Effect 

 A desirable property of any encryption algorithm is that a small change in either the 

plaintext or the key should produce a significant change in the cipher text.  

 In particular, a change in one bit of the plaintext or one bit of the key should produce a 

change in many bits of the cipher text. 

 This is referred to as the avalanche effect.   

DES Round structure. 

 Uses two 32 bit L & R halves. 

 As in any classic Feistel cipher, the overall processing at each round can be summarized 

in the following formulas: 

                                            



Li = Ri-1 

                                             Ri= Li 1 { F(Ri 1, Ki) 

 

 The round key is 48 bits. The input is 32 bits.  

 This input is first expanded to 48 bits by using a table that defines a permutation plus 

an expansion that involves duplication of 16 of the bits. 

 The resulting 48 bits are XOR ed with. This 48-bit result passes through a substitution 

function that produces a 32-bit output, which is permuted as defined by table. 

 The role of the S-boxes in the function F is illustrated in Figure.  

 The substitution consists of a set of eight S-boxes, each of which accepts 6 bits as input 

and Produces 4 bits as output.  

 

 
 

                      Fig: Calculation of F(R, K) 
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2.9. DIFFERENTIAL AND LINEAR CRYPTANALYSIS 

 

2.10. BLOCK CIPHER DESIGN PRINCIPLES 

 

– Block cipher Principles of DES  
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Introduction 

 There are three critical aspects of block cipher design: the number of rounds, design of 

the function F, and key scheduling 

Number of Rounds 

 The greater the number of rounds, the more difficult it is to perform cryptanalysis, even 

for a relatively weak F.  

 In general, the criterion should be that the number of rounds is chosen so that known 

cryptanalytic efforts require greater effort than a simple brute-force key search attack.  

 The differential cryptanalysis attack requires 255.1 operations, whereas brute force 

requires 255.  

 If DES had 15 or fewer rounds, differential cryptanalysis would require less effort than 

a brute-force key search.  

 This criterion is attractive, because it makes it easy to judge the strength of an algorithm 

and to compare different algorithms.  

 In the absence of a cryptanalytic breakthrough, the strength of any algorithm that 

satisfies the criterion can be judged solely on key length. 

Design of Function F 

 The heart of a Feistel block cipher is the function F, which provides the element of 

confusion in a Feistel cipher. Thus, it must be difficult to “unscramble” the substitution 

performed by F.  

 One obvious criterion is that F be nonlinear. The more nonlinear F, the more difficult 

any type of cryptanalysis will be.  

 The more difficult it is to approximate F by a set of linear equations, the more nonlinear 

F is. Several other criteria should be considered in designing F.  

 We would like the algorithm to have good avalanche properties.   

 A more stringent version of this is the strict avalanche criterion (SAC), which states 

that any output bit j of an S-box should change with probability 1/2 when any single 

input bit i is inverted for all i, j.  



 Although SAC is expressed in terms of S-boxes, a similar criterion could be applied to 

F as a whole. This is important when considering designs that do not include S-boxes. 

 Another criterion proposed is the bit independence criterion (BIC), which states that 

output bits j and k should change independently when any single input bit i is inverted 

for all i, j, and k. The SAC and BIC criteria appear to strengthen the effectiveness of 

the confusion function. 

Key Schedule Algorithm 

 With any Feistel block cipher, the key is used to generate one subkey for each round. 

  In general, we would like to select subkeys to maximize the difficulty of deducing 

individual subkeys and the difficulty of working back to the main key.  

 No general principles for this have yet been promulgated.  

 At minimum, the key schedule should guarantee key/ciphertext Strict Avalanche 

Criterion and Bit Independence Criterion. 
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Electronic Code Book 

 The simplest mode is the Electronic codebook (ECB) mode, in which plaintext is 

handled one block at a time and each block of plaintext is encrypted using the same key 

(Figure 6.3).  

 The term codebook is used because, for a given key, there is a unique ciphertext for 

every b-bit block of plaintext.  



 

 For a message longer than b bits, the procedure is simply to break the message into b-

bit blocks, padding the last block if necessary.  

 Decryption is performed one block at a time, always using the same key.  

 We can define ECB mode as follows. 

 

 The ECB method is ideal for a short amount of data, such as an encryption key.  

 For lengthy messages, the ECB mode may not be secure. If the message is highly 

structured, it may be possible for a cryptanalyst to exploit these regularities. 



 

Cipher Block Chaining Mode 

 In this scheme, the input to the encryption algorithm is the XOR of the current plaintext 

block and the preceding ciphertext block; the same key is used for each block. 

  In effect, we have chained together the processing of the sequence of plaintext blocks.  

 The input to the encryption function for each plaintext block bears no fixed relationship 

to the plaintext block. Therefore, repeating patterns of b bits are not exposed.   

 The result is XORed with the preceding ciphertext block to produce the plaintext block. 

To see that this works, we can write 

 

 

 To produce the first block of ciphertext, an initialization vector (IV) is XORed with the 

first block of plaintext. On decryption, the IV is XORed with the output of the 

decryption algorithm to recover the first block of plaintext.  

 We can define CBC mode as 

 



 

Cipher Feedback Mode 

 As with CBC, the units of plaintext are chained together, so that the cipher text of any 

plaintext unit is a function of all the preceding plaintext.  

 In this case, rather than blocks of b bits, the plaintext is divided into segments of s bits. 

 First, consider encryption. The input to the encryption function is a b-bit shift register 

that is initially set to some initialization vector (IV).  

 The leftmost (most significant) s bits of the output of the encryption function are 

XORed with the first segment of plaintext P1 to produce the first unit of ciphertext C1, 

which is then transmitted. 

 In addition, the contents of the shift register are shifted left by s bits, and C1 is placed 

in the rightmost (least significant) s bits of the shift register.  

 This process continues until all plaintext units have been encrypted. For decryption, the 

same scheme is used, except that the received ciphertext unit is XORed with the output 

of the encryption function to produce the plaintext unit 

 This is easily explained. Let MSBs(X) be defined as the most significant s bits of X. 

Then 

 

  



  

 

 

 Output feedback (OFB) mode 

 The output feedback (OFB) mode is similar in structure to that of CFB. For OFB, the 

output of the encryption function is feed back to become the input for encrypting the 

next block of plaintext (Figure 6.6).   

 The other difference is that the OFB mode operates on full blocks of plaintext and 

ciphertext, whereas CFB operates on an s-bit subset. OFB encryption can be expressed 

as 



 

 

  

 

 

Counter Mode 



 Although interest in the counter (CTR) mode has increased recently with applications 

to ATM (asynchronous transfer mode) network security and IP sec (IP security), 

this mode was proposed early on (e.g., [DIFF79]). 

 Figure 6.7 depicts the CTR mode. A counter equal to the plaintext block size is used.   

 Typically, the counter is initialized to some value and then incremented by 1 for each 

subsequent block (modulo 2b, where b is the block size).  

 For encryption, the counter is encrypted and then XORed with the plaintext block to 

produce the ciphertext block; there is no chaining.  

 For decryption, the same sequence of counter values is used, with each encrypted 

counter XORed with a ciphertext block to recover the corresponding plaintext block. 

Thus, the initial counter value must be made available for decryption. Given a sequence 

of counters T1, T2, c, TN, we can define CTR mode as follows. 

 

 

2.12. EVALUATION CRITERIA FOR AES 

 

2.13. ADVANCED ENCRYPTION STANDARD 

 

Finite Field Arithmetic 

 In AES, all operations are performed on 8-bit bytes. In particular, the arithmetic 

operations of addition, multiplication, and division are performed over the finite field.  

 In essence, a field is a set in which we can do addition, subtraction, multiplication, 

and division without leaving the set.  

 Division is defined with the following rule: a/b = a(b-1).   

AES Structure 

 General Structure 

 Detailed Structure 

General Structure 

 

 Figure(5.1). shows the overall structure of the AES encryption process.  

 The cipher takes a plaintext block size of 128 bits, or 16 bytes.  

 The key length can be 16, 24, or 32 bytes (128, 192, or 256 bits). The algorithm is 

referred to as AES-128, AES-192, or AES-256, depending on the key length. 



 The input to the encryption and decryption algorithms is a single 128-bit block. In FIPS 

PUB 197, this block is depicted as a 4 * 4 square matrix of bytes. This block is copied 

into the State array, which is modified at each stage of encryption or decryption. 

  After the final stage, State is copied to an output matrix.   

 This key is then expanded into an array of key schedule words.   

  Each word is four bytes, and the total key schedule is 44 words for the 128-bit key  

 The cipher consists of N rounds, where the number of rounds depends on the key 

length: 10 rounds for a 16-byte key, 12 rounds for a 24-byte key, and 14 rounds for a 

32-byte key. 

  The first N - 1 rounds consist of four distinct transformation functions: SubBytes, 

ShiftRows, MixColumns, and AddRoundKey, which are described subsequently.  

 The final round contains only three transformations, and there is a initial single 

transformation (AddRoundKey) before the first round, which can be considered 

Round 0. Each transformation takes one or more 4 * 4 matrices as input and produces 

a 4 * 4 matrix as output. 



 

Fig : AES Encryption Process 

 

 



 

Detailed Structure 

Figure (5.1) shows the AES cipher in more detail, indicating the sequence of transformations 

in each round and showing the corresponding decryption function.  

We can make several comments about the overall AES structure. 

1. One noteworthy feature of this structure is that it is not a Feistel structure  

2. The key that is provided as input is expanded into an array of forty-four 32-bit words, 

w[i]. Four  

distinct words (128 bits) serve as a round key for each round; these are indicated in 

Figure 5.3 

3.Four different stages are used, one of permutation and three of substitution: 

• Substitute bytes: Uses an S-box to perform a byte-by-byte substitution of the block 

• ShiftRows: A simple permutation 

• MixColumns: A substitution that makes use of arithmetic over GF(28) 

• AddRoundKey: A simple bitwise XOR of the current block with a portion of the expanded  

Key. 

4. The structure is quite simple.   

5. Only the AddRoundKey stage makes use of the key. For this reason, the cipher begins and 

ends with an AddRoundKey stage.   

6. The AddRoundKey stage is, in effect, a form of Vernam cipher and by itself would not be 

formidable. The other three stages together provide confusion, diffusion, and nonlinearity, but 

by themselves would provide no security because they do not use the key.   

7. Each stage is easily reversible.   

8. Once it is established that all four stages are reversible, it is easy to verify that decryption 

does recover the plaintext.   

9. The final round of both encryption and decryption consists of only three stages.Again, this 

is a consequence of the particular structure of AES and is required to make the cipher reversible 



 

Fig  (5.3): AES Encryption and Decryption 

 

AES Transformation Functions 

The four transformations used in AES. For each stage, we describe the forward (encryption) 

algorithm, the inverse (decryption) algorithm, and the rationale for the stage. 

 Substitute Bytes Transformation 

 Shift Rows Transformation 

 Mix Columns Transformation 

 AddRoundKey Transformation 

Substitute Bytes Transformation 

 The forward substitute byte transformation, called SubBytes, is a simple table 

lookup. AES defines a 16 * 16 matrix of byte values, called an S-box, that contains a 

permutation of all possible 256 8-bit values. 

  Each individual byte of State is mapped into a new byte in the following way:  



 The leftmost 4 bits of the byte are used as a row value and the rightmost 4 bits are used 

as a column value.  

 These row and column values serve as indexes into the S-box to select a unique 8-bit 

output value.   

Shift Rows Transformation 

 The first row of State is not altered.  

 For the second row, a 1-byte circular left shift is performed.  

 For the third row, a 2-byte circular left shift is performed.  

 For the fourth row, a 3-byte circular left shift is performed. 

 The inverse shift row transformation, called InvShiftRows, performs the circular shifts 

in the opposite direction for each of the last three rows, with a 1-byte circular right shift 

for the second row, and so on. 

MixColumns Transformation 

 MixColumns, operates on each column individually. 

  Each byte of a column is mapped into a new value that is a function of all four bytes 

in that column. 

AddRoundKey Transformation 

 AddRoundKey, the 128 bits of State are bitwise XORed with the 128 bits of the round 

key. 
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RC5 is a symmetric encryption algorithm developed by Ron Rivest. RC5 was designed to have 

the following characteristics:   

 

 Suitable for hardware or software  

 Fast  

 Adaptable to processors of different word lengths  

 Variable number of rounds:   

 Variable-length key  



 Simple . 

 Low memory requirement  

 High security  

 

 RC5 has been incorporated into RSA Data Security, Inc-’s major products, including 

BSAFE, JSAFE, and S/MAIL. 

 

RC5 Parameters 

RC5 is actually a family of encryption algorithms determined by three parameters, as 

follows: 

 
Key Expansion 

 

 RC5 performs a complex set of operations on the secret key to produce a total of t  

subkeys. Two subkeys are used in each round, and two subkeys are used on an 

additional operation that is not part of any round, so t = 2r + 2. Each subkey is one 

Word (w bits) in length. 

 

 Figure 4-11 illustrates the technique used to generate subkeys; The subkeys are stored 

in a t-word array labeled S[0], S[1], ….,‘ S[t-1]. Using the parameters r and w as inputs, 

this array is initialized to a particular fixed pseudorandom bit pattern. 

 

  Then the b-byte key, K[0…. b - 1], is converted into a c-word array L[0…. c -1]. On a 

little endian machine, this is accomplished by zeroing out the array L and copying the 

string K directly into the memory positions represented by L. 

 

 If b is not an integer multiple of w, then a portion of L at the right end remains zero- 

Finally, a mixing operation is performed that applies the contents of L to the initialized 

value of S to produce a final value for the array S. 



 
Let us look at this operations in detail. The initialize operation makes use of two word-length 

constants defined as follows, 

 
Where 

 
Encryption: 

 

 RC5 uses three primitive operations (and their inverses): 

 Addition: Addition of words, denoted by +, is performed modulo 2w. The inverse 

operation, denoted by -, is subtraction modulo 2w. 

 Bitwise exclusive-OR: This operation is denoted by  

 Left circular rotation: The cyclic rotation of word x left by y bits is denoted by        

x <<< y. The inverse is the right circular rotation of word x by y bits, denoted  by       

x >>> y. 

 

Figure 4-12a depicts the encryption operation. Note that this is not a classic Feistel structure. 

The plaintext is assumed to initially reside in the two w-bit registers A and B.  

We use the variables LEi and REi to refer to the left and right half of the data after round i has 

completed. 



 

 
 

Decryption 

 

 Decryption, shown in Figure 4-12b, is easily derived from the encryption algorithm. In 

this case, the 2w bits of ciphertext are initially assigned to the two one-word variables 

LDr, and RDr.  

 We use the variables LDi and RDi to refer to the left and right half of the data before 

round i has begun, where the rounds are numbered from r down to 1. 

 

RC5 Modes: 

 

To enhance the effectiveness of RC5 in interoperable implementations, RFC 2040 defines four 

different modes of operation: 

 

 RC5 block cipher: This is the raw encryption algorithm that takes a fixed—size 

input block (2w bits) and produces a ciphertext block of the same length using a 

transformation that depends on a key.  

 RCS-CBC: This is the cipher block chaining mode for RC5- CBC. CBC processes 

messages whose length is a multiple of the RC5 block size (multiples of 2w bits. 

CBC provides enhanced security compared to ECB because repeated blocks of 

plaintext produce different blocks of ciphertext. 



 RCS-CBC-Pad: This is a CBC style of algorithm that handles plaintext of any 

length- The ciphertext will be longer than the plaintext by at most the size of a single 

RC5 block. 

 RCS-CTS: This is the ciphertext stealing mode, which is also a CBC style of 

algorithm- This mode handles plaintext of any length and produces ciphertext of 

equal length. 

 

The encryption sequence is as follows: 

 

 
2.15. KEY DISTRIBUTION 

 


